

Development of a Superconducting Magnet System for a Helicon Plasma Thruster

John Vitucci

Advisor: Dr. Raymond Sedwick
NASA Space Technology Research Fellow
University of Maryland, College Park
Space Power and Propulsion Lab
Advanced Space Propulsion Workshop 2014

Outline

- Introduction
 - Helicon Thruster
 - Motivation
 - Previous Designs
- Superconducting Helicon Thruster (SHT)
 - Superconducting Magnet Subsystem
 - Thermal Management Subsystem
- Conclusion and Future Work

Introduction: Helicon Thruster

- Helicon waves generated with helical RF antennas
 - Frequency 13.56 MHz (or a harmonic/sub-harmonic)
- Antenna current induces time varying magnetic field
 - Resulting in curling electric field according to Maxwell's equations
- Electric field accelerates free electrons until ionization energy reached
- Critical density of electrons occurs causing plasma ignition from electron avalanche¹

Single turn, half-wavelength helical RF antenna for helicon plasma generation. Photo courtesy M. DeMaio⁵.

SPPL Helicon thruster operating at 300W RF and axial field strength approximately 200 G . Photo courtesy A.J. Faust.

Introduction: Helicon Thruster

- Requires an externally applied, axial magnetic field to²:
 - Support the propagation of the helicon wave
 - Improve plasma confinement
 - Support the formation of the naturally occurring acceleration mechanism³
- Magnetic field strength directly determines the plasma density⁴
 - Little evidence that it contributes to ion acceleration⁵
- Depending on power input, thruster operates at three coupling modes⁶
 - Capacitive
 - Inductive
 - Helicon

Introduction: SHT - Motivation

- Largest power sink occurs at the plasma boundary across plasma sheath⁷
- Impose two conditions on the magnetic field:
 - Axial uniformity to support helicon wave propagation
 - Convergence upstream to improve plasma confinement
- Superconductors to manipulate magnetic field via Meissner effect
- Straight forward with low temperature type-I superconductor
 - Exhibit perfect diamagnetism and completely expel magnetic flux (+)
 - Lower temperature impractical due to cooling system requirements (-)
- High temperature type-II superconductors (HTS)
 - Can be cooled with liquid nitrogen (+)
 - Allows partial penetration of magnetic flux due to mixed/vortex state⁸ (-)
- Impose two conditions on thermal management subsystem:
 - Maintain cryogenic temperatures for HTS in closed loop system
 - Intercept heat generated by plasma and radiate away

Introduction: SHT – Previous Designs

"Concept Car"

Superconductor capped by permanent disk magnet

Pros:

- Generates correct shape
- Simplistic design

Cons:

- Magnetic flux locked in by superconductor (Type-II)
- Disc magnet eliminates gas inlet

Introduction: SHT – Previous Designs

"2nd Gen"

Annular tube with retractable permanent magnet core

Pros:

- Eliminates lock-in problem
- Allows for gas inlet

Cons:

- Annular design increases power loss area
- Does not provide uniform field within and downstream of antenna
- Requires actuation of permanent magnet string

Introduction: SHT – Previous Designs

- Magnetic field from permanent magnet and solenoid combination
- Solenoid is used to generate an axially uniform magnetic field
- Upstream convergence produced with a permanent ring magnet
- Liquid nitrogen pumped into the annulus of aluminum housing
- Solenoid powered off once the critical temperature of HTS is reached
- Current induced in the superconductor according to Lenz's Law

SHT Schematic in COMSOL MultiPhysics.

Superconductor housing and solenoid.

- Magnitude of induced current in solenoid is nl
- Assume superconductor acts as a solenoid itself with equal length, L
- Axial magnetic field strength identical to that of solenoid (Ampere's Law)

$$B = \frac{m_0 nI}{L}$$

B: Axial Magnetic Field Strength (G)

 μ_0 : Permeability of Free Space

n: Number of Solenoid Turns

I: Current through Solenoid (A)

L: Solenoid Length (m)

- Induced current (nl) maintains magnetic field without continuous power
- Tested with smaller (0.85" ID) superconductor and Helmholtz coil
 - Coil produced 65 G ± 4 G and was maintained by solenoid
- Modeled magnet subsystem in COMSOL MultiPhysics
- Hardware currently in development for comparison with model

Computation Results: T > T_C

- Magnet mirror configuration observed upstream
- Field is not uniform axially due to permanent ring magnet

Computation Results: T < T_C

- Magnet mirror configuration maintained and larger in magnitude
- Axial magnetic field has become more uniform

SHT: Thermal Management Subsystem

Power generated by plasma must be intercepted and radiated away to maintain cryogenic temperatures in closed-loop system

$$P_{rad}(z,r) = (E_{ion}^{\complement} - E_{ion}) n n_n R_{ion}$$
 [W/m³]

L = 40 cm

R = 2.5 cm

$$q_r(z) = \frac{2}{6} + \frac{1}{2} \ln \frac{2}{6} + \frac{m_i}{2Dm} \frac{00}{6} + \frac{1}{2Dm} \frac{00}{6} + \frac{1}{2Dm$$

- Calculate radiative heat flux to each wall then conducted power to lateral wall
 - Assume no conducted power upstream due to confinement

- Integrate over area
 - $P_{BW} = 0.32 W$
 - $P_{LW} = 50 W$
 - $P_{cond} = 3.9 \text{ kW}$
 - $P_{tot} \sim 4 \text{ kW}$

SHT: Thermal Management Subsystem

- Utilize three insulating layers between quartz and superconductor housing
 - Conformal copper layer to intercept power to walls
 - Kapton layer to electrically insulate power leads to antenna
 - Delrin layer to thermally insulate housing (maintain cryogenic temperatures)
- Conformal copper layer attached to copper disk at exit plane to radiate heat
- Can use excess heat to evaporate water in water vapor propellant applications
- Use power source calculations to calculate heat transfer in system
 - MATLAB simulation using heat transfer equation
 - Determine appropriate layer thicknesses to properly insulate system

SHT: Thermal Management Subsystem

$$\frac{\partial T}{\partial t} = \frac{k}{c_p \rho} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} \right] + \frac{\dot{q}}{c_p \rho}$$

- Solve heat transfer equation in one dimension
 - Steady State
- Quartz layer
 - $P_{cond} = 3.9 \text{ kW}$
- Copper layer
 - P_{rad} = 100 W
- Boundary Conditions:
 - $T(r = OR_{\Delta I}) = 77 \text{ K}$
 - $q(r = IR_{Qu}) = P_{cond}/A_{qu} = -k (dT/dr)|_{r=IR_{Qu}}$

Liquid nitrogen region maintains cryogenic temperatures.

Conclusion & Future Work

- A superconducting helicon plasma system is presented
 - Superconducting magnet subsystem satisfies magnetic field requirements
 - Thermal management subsystem to address heat transfer/insulation
- Each subsystem will be constructed and compared with the computational models
- Complete system will be integrated into helicon thruster setup at UMD SPPL
 - Compare with baseline helicon plasma thruster performance

Acknowledgements

This work was supported in part by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.

References

¹M. DeMaio, "Development and Test of a Permanent Magnet Helicon Thruster," *MS Thesis*, University of Maryland, College Park, 2010

²Sinenian, N., "Propulsion Mechanisms in a Helicon Plasma Thruster," Master's Thesis, Department of Nuclear Science and Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 2008.

³Charles, C., and Boswell, R.W., "Current-Free Double-Layer Formation in a High-Density Helicon Discharge," *Appl. Phys. Lett.*, Vol. 82, No. 9, 2003, p. 1356-1358.

⁴Chen, F.F., "Plasma Ionization by Helicon Waves," *Plasma Phys. and Controlled Fusion*, Vol. 33, No. 4, 1991, p. 339-364.

⁵Sun, X., et al., "Parallel Velocity and Temperature of Argon Ions in an Expanding, Helicon Source Driven Plasma," *Plasma Sources Sci. Technol.*, Vol. 13, No. 3, 2004, p. 359-370.

⁶A.R. Ellingboe and R.W. Boswell, "Capacitive, Inductive, and Helicon-Wave Modes of Operation," *Phys. Plasmas*, Vol. 3, No. 7, 1996, pp. 2797-2804

⁷Fruchtman, A., "Thrust of a Collisionless Plasma," *IEEE Trans. Plasma Sci.*, Vol. 39, No. 1, 2011, pp. 530-539.

⁸A. Abrikosov, "Type II Superconductors and the Vortex Lattice", Nobel Lecture, 2003, pp. 59-67

Thank You

Questions?